

Daily Tutorial Sheet 8 Level - 2

96. [A-s] [B-r] [C-q] [D-p]

(A) $Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2$; Bessemerisation

(B) Ni + 4CO
$$\longrightarrow$$
 Ni(CO)₄ $\stackrel{\Delta}{\longrightarrow}$ Ni + CO; Mond's process

(C)
$$\text{Ti} + 2I_2 \longrightarrow \text{TiI}_4 \xrightarrow{\Delta} \text{Ti} + 2I_2$$
; Van-Arkel method

(D) Si and Ge \longrightarrow Zone refining

97. [A-s] [B-q] [C-r] [D-p]

(A) Cyanide process \rightarrow Extraction of Au (B) Floatation process \rightarrow Pure oil

(C) Electrolytic reduction \rightarrow Ext. of Al (D) Zone-refining \rightarrow Ultra pure Ge

98.(A) To extract Mg: electrolysis of fused/molten salt.

99.(C) In Hall Haroult's process : electrolyte = $Al_2O_3 + Na_3AlF_6 + CaF_2$

 $\textbf{100.(B)} \qquad 2 \operatorname{Al}_2 \operatorname{O}_3(s) + 3 \operatorname{C}(s) \longrightarrow \underbrace{4 \operatorname{Al}}_{(molten)} + 3 \operatorname{CO}_2(g); \ \underset{(reaction)}{\Delta H^\circ} = + \text{(ve)}$

101.(BC) Coal gas consist of major % of CO which create a passive layer that present reduction of Mg with O_2 and N_2 .

102.(A) Ni-anodes and Fe-cathodes are been used in the castner's process.

103.(C) K is more reactive than Mg; thus Mg^{2+} is easier to get discharge at cathode as compared to K^+ ions.

104.(B) Oxide + Al \longrightarrow Oxide of Al + metal

105.(D) Mg^{2+} can be preferentially discharge over Al^{3+} at cathode.